Malaysia-based online bookstore - 15 million titles - quick local delivery with tracking number
MAY 2025 - BROWSE 4000 BOOK CATEGORIES - HERE IN MALAYSIA
An Introduction to Statistical Learning: With Applications in R
An Introduction to Statistical Learning: With Applications in R - Edition #2 - Second 2021
by James, Gareth , Witten, Daniela , Hastie, Trevor
Paperback - English

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

RM 486.91
RM 437.73
We're here in Malaysia - Local courier delivery with tracking number

SCHOOL & CORPORATE ORDERS
AVAILABLE
Usually delivered within 7-12 working days.
(138 copies available)

ADDITIONAL INFO

Edition Number
2
Edition Number
Second 2021
ISBN
1071614207
EAN
9781071614204
Publisher
Publication Date
30 Jul 2022
Pages
607
Weight (kg)
0.86
Dimensions (cm)
23.4 x 15.6 x 3.2
Categories
×

Add to My List

List