This devotional encourages you to declare your victories, healing, and freedom while stepping into your divine authority. Written to empower every reader to know and understand their true identity in Christ, Buit for the Battle draws a powerful analogy to a butterfly, emphasizing that once God lifts you from darkness, there's no turning back. It's time to spread your wings and soar towards triumph.
Evangelist O'Keiya Dinnall is a resident of Brunswick County, where she has spent her entire life cultivating deep roots within the community. For 27 years, she has stood by the side of her God-sent husband Fray Dinnall embracing the joys and challenges of marriage. As a loving mother of two and a doting grandmother to three grandchildren, family holds a central place in O'Keiya's heart. Armed with a degree in biblical studies and theology, and a master's degree in divinity, O'Keiya finds solace and purpose in sharing the transformative power of God's word with the lost and broken.
Electron storage rings play a crucial role in many areas of modern scientific research. Introduction to Beam Dynamics in High-Energy Electron Storage Rings describes the physics of particle behaviour in these machines. Starting with an outline of the history, uses and structure of electron storage rings, the book develops the foundations of beam dynamics, covering particle motion in the components used to guide and focus the beams, the effects of synchrotron radiation, and the impact of interactions between the particles in the beams.
This is a strong foundation of human-centric virtual reality design for anyone and everyone involved in creating VR experiences. Without a clear understanding of the human side of virtual reality (VR), the experience will always fail.
The VR Book bridges this gap by focusing on human-centered design. Creating compelling VR applications is an incredibly complex challenge. When done well, these experiences can be brilliant and pleasurable, but when done badly, they can result in frustration and sickness. Whereas limitations of technology can cause bad VR execution, problems are oftentimes caused by a lack of understanding human perception, interaction, design principles, and real users. This book focuses on the human elements of VR, such as how users perceive and intuitively interact with various forms of reality, causes of VR sickness, creating useful and pleasing content, and how to design and iterate upon effective VR applications.
This book is not just for VR designers, it is for managers, programmers, artists, psychologists, engineers, students, educators, and user experience professionals. It is for the entire VR team, as everyone contributing should understand at least the basics of the many aspects of VR design. The industry is rapidly evolving, and The VR Book stresses the importance of building prototypes, gathering feedback, and using adjustable processes to efficiently iterate towards success. It contains extensive details on the most important aspects of VR, more than 600 applicable guidelines, and over 300 additional references.
Pathogens such as viruses and bacteria are among the greatest threats to human health worldwide. In today's era of population growth and international travel, new technologies are desperately needed to combat the spread of known and emerging pathogens.
This book presents a new concept for pathogen inactivation called selective photonic disinfection (SEPHODIS). The SEPHODIS technology inactivates pathogens by mechanical means, a total paradigm shift from traditional chemical and physical methods. The unique strength of SEPHODIS resides in its capability to inactivate pathogens while preserving desirable materials such as human cells and proteins. The technology also avoids the need to use chemicals, drastically reducing the risk of side effects. These properties make SEPHODIS ideal for important biomedical applications such as safeguarding blood products and therapeutics against pathogens, as well as producing effective and safe vaccines to combat infectious disease.
Written in a style that is both technically informative and easy to comprehend for the layman reader, this book illustrates the story of SEPHODIS from its initial discovery and bench studies to its real-world applications.
Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic.
This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.
How You Become You is a lyrical roadmap to help kids (and their parents) create a strong sense of self. It encourages readers to experience as much of the world as they can and then get clear on what they love and what they believe so that they can continue on with purpose and meaning. The rhythm and imagery are great for young audiences while the message will resonate with older children and young adults trying to figure themselves out and find their way in the world.
A Tour of the Subatomic Zoo is a brief and ambitious expedition into the remarkably simple ingredients of all the wonders of nature. Tour guide, Professor Cindy Schwarz clearly explains the language and substance of elementary particle physics for the 99% of us who are not physicists.
With hardly a mathematical formula, views of matter from the atom to the quark are discussed in a form that an interested person with no physics background can easily understand. It is a look not only into some of the most profound insights of our time, but a look at the answers we are still searching for.
College and university courses can be developed around this book and it can be used alone or in conjunction with other material. Even college physics majors would enjoy reading this book as an introduction to particle physics. High-school, and even middle-school, teachers could also use this book to introduce this material to their students. It will also be beneficial for high-school teachers who have not been formally exposed to high-energy physics, have forgotten what they once knew, or are no longer up to date with recent developments.
The goal of this book is to introduce a reader to a new philosophy of teaching and learning physics - Investigative Science Learning Environment, or ISLE (pronounced as a small island).
ISLE is an example of an intentional approach to curriculum design and learning activities (MacMillan and Garrison 1988 A Logical Theory of Teaching: Erotetics and Intentionality). Intentionality means that the process through which the learning occurs is as crucial for learning as the final outcome or learned content. In ISLE, the process through which students learn mirrors the practice of physics.
Parkinson's disease is a neurological disorder with cardinal motor signs of resting tremor, bradykinesia and lead-pipe rigidity.
In addition, many patients display non-motor symptoms, including a diminished sensation of smell, gastrointestinal problems, various disorders of sleep and some cognitive impairment. These clinical features - particularly the motor signs - manifest after a progressive death of many dopaminergic neurones in the brain. Although currently available, conventional therapies can reduce the signs of the disease, the progression of this neuronal death has proved difficult to slow or stop, and the condition is relentlessly progressive. Hence, there is a real need to develop a treatment that is neuroprotective, one that slows the pathology of the disease effectively. At present, there are several neuroprotective therapies in the experimental pipeline, but these are for the patients of tomorrow. This book focuses on two therapies that are readily available for the patients of today. They involve the use of exercise and light (i.e. photobiomodulation, the use of red to infrared light therapy (λ=600-1070nm) on body tissues). The two therapies are tied together in several ways. First, in animal models of Parkinson's disease, they each have been shown to offer the key feature of neuroprotection, stimulating a series of built-in protective mechanisms within the neurones, that helps their survival, to self-protect and/or self-repair. There are also some promising indications of neuroprotection and many beneficial outcomes in parkinsonian patients. Further, both exercise and light therapies are similar in that they are non-invasive and safe to use, with no known adverse side-effects, making their combination with the conventional therapies, such as dopamine replacement drug therapy and deep brain stimulation, all the more feasible. Given the heterogeneity of Parkinson's disease in humans, tackling the condition from a range of different angles - with a number of different therapies - would only serve to enhance the positive outcomes. This book considers the use of exercise and light therapies, proposing that they have the potential to make a powerful dynamic duo, offering a most effective neuroprotective treatment option to patients.
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior.
This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed). Many of these objections rightly call into question typical conceptions of emergence found in the philosophy literature.
This book explores whether physics points to a reductive or an emergent structure of the world and proposes a physics-motivated conception of emergence that leaves behind many of the problematic intuitions shaping the philosophical conceptions. Examining several detailed case studies reveal that the structure of physics and the practice of physics research are both more interesting than is captured in this reduction/emergence debate. The results point to stability conditions playing a crucial though underappreciated role in the physics of emergence. This contextual emergence has thought-provoking consequences for physics and beyond, and will be of interest to physics students, researchers, as well as those interested in physics.
Holographic dualities are at the forefront of contemporary physics research, peering into the fundamental nature of our universe and providing best attempt answers to humankind's bold questions about basic physical phenomena.
Yet, the concepts, ideas and mathematical rigors associated with these dualities have long been reserved for the specific field researchers and experts. This book shatters this long held paradigm by bringing several aspects of holography research into the class room, starting at the college physics level and moving up from there.
Asian studies and Physics is a unique blend rarely found in a Western scientific classroom.
The field of Asian studies is rapidly growing and the traditional study of Asian philosophy, art, language and literature is branching out into scientific realms. At the same time, there is a growing need to educate our young people in science technology and mathematics (STEM). Reaching non-science majors with the basic principles of physics presents a particularly unique challenge. The topics presented in this work are designed to appeal to a wide range of students and present scientific principles through the technology and inventions of ancient China. We explore these ideas in their historical Chinese context and through the lens of our current scientific understanding. Our exploration of ancient Chinese science is not limited to just a theoretical understanding of physical principles. One distinction of this book is the strong hands on component. Detailed laboratory experiments are included which enable students to analyze ancient technology using modern laboratory techniques. Each experiment introduces the historical context and provides associated Chinese vocabulary. On the surface, these experiments involve recreating a Chinese technology. On a deeper level, we find connections to the scientific method and techniques of experimental analysis. Thus, an activity such as making paper, turns into a lesson on statistics and graphical analysis. Topics included in this volume cover one dimensional motion, energy conservation, rotational equilibrium and elasticity. We also explore the nature of science and include an introduction to the Chinese language. Laboratory experiments cover papermaking, constructing a weighing balance and stress-strain analysis of silk.
There have been many recent discussions of the 'replication crisis' in psychology and other social sciences.
This has been attributed, in part, to the fact that researchers hesitate to submit null results and journals fail to publish such results. In this book Allan Franklin and Ronald Laymon analyze what constitutes a null result and present evidence, covering a 400-year history, that null results play significant roles in physics.
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies.
The text, aimed at graduate level physics students with a working knowledge of quantum mechanics and statistical physics, provides a brief overview of the development of classical thermodynamics and its quantum formulation in Chapter 1. Chapter 2 then explores typical thermodynamic settings, such as cycles and work extraction protocols, when the working material is genuinely quantum. Finally, Chapter 3 explores the thermodynamics of quantum information processing and introduces the reader to some more state of-the-art topics in this exciting and rapidly developing research field.