This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Fully updated for the 2020 Edition of the ASME B31.3 Code, this fourth edition provides background information, historical perspective, and expert commentary on the ASME B31.3 Code requirements for process piping design and construction. It provides the most complete coverage of the Code that is available today and is packed with additional information useful to those responsible for the design and mechanical integrity of process piping. The author and the primary contributor to the fourth edition, Don Frikken are long-serving members, and prior Chairmen, of the ASME B31.3, Process Piping Code committee.
Dr. Becht explains the principal intentions of the Code, covering the content of each of the Code's
chapters. Book inserts cover special topics such as calculation of refractory lined pipe wall temperature, spring design, design for vibration, welding processes, bonding processes and expansion joint pressure thrust. Appendices in the book include useful information for pressure design and flexibility analysis as well as guidelines for computer flexibility analysis and design of piping systems with expansion joints.
From the new designer wanting to known how to size a pipe wall thickness or design a spring to the expert piping engineer wanting to understand some nuance or intent of the code, everyone whose career involves process piping will find this to be a valuable reference.
The Essential Textbook for Mastering Chemical Reaction Engineering--Now Fully Updated with Expanded Coverage of Electrochemical Reactors
H. Scott Fogler's Elements of Chemical Reaction Engineering, now in its seventh edition, continues to set the standard as the leading textbook in chemical reaction engineering. This edition, coauthored by Bryan R. Goldsmith, Eranda Nikolla, and Nirala Singh, still offers Fogler's engaging and active learning experience, with updated content and expanded coverage of electrochemical reactors.
Reflecting current theories and practices, and with a continuing emphasis on safety and sustainability, this edition includes expanded sections on molecular simulation methods, analysis of experimental reactor data, and catalytic reactions.
Leveraging the power of Wolfram, Python, POLYMATH, and MATLAB, students can explore the intricacies of reactions and reactors through realistic simulation experiments. This hands-on approach allows students to clearly understand the practical applications of theoretical concepts.
This book prepares undergraduate students to apply chemical reaction kinetics and physics to the design of chemical reactors. Advanced chapters cover graduate-level topics, including diffusion and reaction models, residence time distribution, and tools to model non-ideal reactors.
The seventh edition includes
About the Companion Web Site (umich.edu/ elements/7e/index.html)
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Craftspeople interested in traditional methods will welcome this complete guide to making and using dyes from plants. Although its emphasis is on plants of Northeastern North America, many of the plants listed are found throughout the world.
Helpful introductory chapters on equipment, mordants, dyeing procedures and other essentials, are followed by individual plants: its suitability for dyeing, useful parts, how to process them, colors, dye fastness, plant identification, where to find it, and more. Also include four valuable indexes -- plants by common name, botanical name, by colors produced, and a general index. A list of suppliers, metric conversion tables and other information rounds out this thorough guide to safe, ecologically sound dyeing methods.
Now in its seventh edition, the text still contains its balanced treatment of theory and engineering practice, with many practical, illustrative examples included. Almost 30% of the problems have been revised or are new, some of which cover modern topics such as food processing and biotechnology. Other unique topics of this text include diafiltration, adsorption and membrane operations.
An accessible introduction to chemical engineering for specialists in adjacent fields
Chemical engineering plays a vital role in numerous industries, including chemical manufacturing, oil and gas refining and processing, food processing, biofuels, pharmaceutical manufacturing, plastics production and use, and new energy recovery and generation technologies. Many people working in these fields, however, are nonspecialists: management, other kinds of engineers (mechanical, civil, electrical, software, computer, safety, etc.), and scientists of all varieties. Introduction to Chemical Engineering is an ideal resource for those looking to fill the gaps in their education so that they can fully engage with matters relating to chemical engineering.
Based on an introductory course designed to assist chemists becoming familiar with aspects of chemical plants, this book examines the fundamentals of chemical processing. The book specifically focuses on transport phenomena, mixing and stirring, chemical reactors, and separation processes. Readers will also find:
Introduction to Chemical Engineering is a great help for chemists, biologists, physicists, and non-chemical engineers looking to round out their education for the workplace.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The topics covered in this eBook include:
Chemistry and engineering students will find these topics well simplified, thereby making chemical process calculations more interesting.
A constructive review of this chemical text will be highly appreciated from buyers so as to give an overview to others who intend to purchase a copy of it, and also to serve as a form of advice to the author when revising the book.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface.
We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface.
We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Provides a comprehensive understanding of a wide range of systems and topics in electrochemistry
This book offers complete coverage of electrochemical theories as they pertain to the understanding of electrochemical systems. It describes the foundations of thermodynamics, chemical kinetics, and transport phenomena--including the electrical potential and charged species. It also shows how to apply electrochemical principles to systems analysis and mathematical modeling. Using these tools, the reader will be able to model mathematically any system of interest and realize quantitative descriptions of the processes involved.
This brand new edition of Electrochemical Systems updates all chapters while adding content on lithium battery electrolyte characterization and polymer electrolytes. It also includes a new chapter on impedance spectroscopy. Presented in 4 sections, the book covers: Thermodynamics of Electrochemical Cells, Electrode Kinetics and Other Interfacial Phenomena, Transport Processes in Electrolytic Solutions, and Current Distribution and Mass Transfer in Electrochemical Systems. It also features three appendixes containing information on: Partial Molar Volumes, Vectors and Tensors, and Numerical Solution of Coupled, Ordinary Differential Equations.
Electrochemical Systems, Fourth Edition is an excellent resource for students, scientists, and researchers involved in electrochemical engineering.