In the nineteenth century, French mathematician Evariste Galois developed the Galois theory of groups-one of the most penetrating concepts in modem mathematics. The elements of the theory are clearly presented in this second, revised edition of a volume of lectures delivered by noted mathematician Emil Artin. The book has been edited by Dr. Arthur N. Milgram, who has also supplemented the work with a Section on Applications.
The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more.
Dr. Milgram's section on applications discusses solvable groups, permutation groups, solution of equations by radicals, and other concepts.
This fifth entry in the highly acclaimed Math Girls series focuses on the mathematics of Évariste Galois, the nineteenth-century wunderkind who revolutionized mathematics with work he performed while still a teenager. Mathematicians before him had discovered solutions to general second-, third-, and fourth-degree equations, but a similar quintic formula that would allow knowing the solutions to any fifth-degree equation had eluded mathematicians for centuries. Through his ingenious approach of bridging the worlds of groups and fields, young Galois not only showed that such a formula was impossible, he newly developed group theory and the branch of mathematics that today bears his name. Join Miruka and friends to see how Galois developed his theory, along with related topics such as geometric constructions and the angle trisection problem, derivation of the cubic formula, reducible and irreducible polynomials, group theory and field theory, symmetric polynomials, roots of unity, sets and cosets, cyclotomic polynomials, vector spaces, extension fields, and symmetric groups. The book concludes with a tour through Galois's first paper, in which he describes for the first time the necessary and sufficient conditions for a polynomial to be algebraically solved using radicals. Math Girls 5: Galois Theory has something for anyone interested in mathematics, from advanced high school to college students and educators.
This book contains surveys and research articles on the state-of-the-art in finitely presented groups for researchers and graduate students. Overviews of current trends in exponential groups and of the classification of finite triangle groups and finite generalized tetrahedron groups are complemented by new results on a conjecture of Rosenberger and an approximation theorem. A special emphasis is on algorithmic techniques and their complexity, both for finitely generated groups and for finite Z-algebras, including explicit computer calculations highlighting important classical methods. A further chapter surveys connections to mathematical logic, in particular to universal theories of various classes of groups, and contains new results on countable elementary free groups. Applications to cryptography include overviews of techniques based on representations of p-groups and of non-commutative group actions. Further applications of finitely generated groups to topology and artificial intelligence complete the volume. All in all, leading experts provide up-to-date overviews and current trends in combinatorial group theory and its connections to cryptography and other areas.
Here is a unique pedagogical textbook by the gifted Professor Mildred Dresselhaus. It first provides a quick introduction to the theoretical background, the first four chapters which can be covered in six to eight classroom hours. From there, each chapter develops new theory while introducing applications so that students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolidation of material learned in previous chapters. The text and problem sets provide a useful springboard for the application of the basic material presented here to topics in semiconductor physics and the physics of carbon-based nanostructures.
This updated and revised edition of David Joyner's entertaining hands-on tour of group theory and abstract algebra brings life, levity, and practicality to the topics through mathematical toys.
Joyner uses permutation puzzles such as the Rubik's Cube and its variants, the 15 puzzle, the Rainbow Masterball, Merlin's Machine, the Pyraminx, and the Skewb to explain the basics of introductory algebra and group theory. Subjects covered include the Cayley graphs, symmetries, isomorphisms, wreath products, free groups, and finite fields of group theory, as well as algebraic matrices, combinatorics, and permutations.
Featuring strategies for solving the puzzles and computations illustrated using the SAGE open-source computer algebra system, the second edition of Adventures in Group Theory is perfect for mathematics enthusiasts and for use as a supplementary textbook.