The book places emphasis on both the mathematical significance and the strong physical background of wave equations. It presents the theory of wave equations in a unique way, different from the traditional descriptions provided by previous literature. The book is primarily focused on mathematical ideas and thoughts about wave equations. Starting from the modern theory of harmonic analysis, the book develops a few new tools in this field that are being used for better understanding the theory of mathematical physics underlying the well-posedness and scattering theory of wave and Klein-Gordon equations. Additionally, a significant part of this book discusses theories and methods, such as invariant and conservation laws, inward/outward energy methods, etc., that have never been covered by similar books in this field. Finally, the book briefly introduces recent developments in mathematical fields. It is specially designed for experts in mathematics and physics who deal with numerous applications of nonlinear waves in physics, engineering, biology, and other fields.
When we study differential equations in Banach spaces whose coefficients are linear unbounded operators, we feel that we are working in ordinary differential equations; however, the fact that the operator coefficients are unbounded makes things quite different from what is known in the classical case. Examples or applications for such equations are naturally found in the theory of partial differential equations. More specifically, if we give importance to the time variable at the expense of the spatial variables, we obtain an ordinary differential equation with respect to the variable which was put in evidence. Thus, for example, the heat or the wave equation gives rise to ordinary differential equations of this kind. Adding boundary conditions can often be translated in terms of considering solutions in some convenient functional Banach space. The theory of semigroups of operators provides an elegant approach to study this kind of systems. Therefore, we can frequently guess or even prove theorems on differential equations in Banach spaces looking at a corresponding pattern in finite dimensional ordinary differential equations.
This book has been widely acclaimed for its clear, cogent presentation of the theory of partial differential equations, and the incisive application of its principal topics to commonly encountered problems in the physical sciences and engineering. It was developed and tested at Purdue University over a period of five years in classes for advanced undergraduate and beginning graduate students in mathematics, engineering and the physical sciences.
The book begins with a short review of calculus and ordinary differential equations, then moves on to explore integral curves and surfaces of vector fields, quasi-linear and linear equations of first order, series solutions and the Cauchy Kovalevsky theorem. It then delves into linear partial differential equations, examines the Laplace, wave and heat equations, and concludes with a brief treatment of hyperbolic systems of equations.
Among the most important features of the text are the challenging problems at the end of each section which require a wide variety of responses from students, from providing details of the derivation of an item presented to solving specific problems associated with partial differential equations. Requiring only a modest mathematical background, the text will be indispensable to those who need to use partial differential equations in solving physical problems. It will provide as well the mathematical fundamentals for those who intend to pursue the study of more advanced topics, including modern theory.
The second edition of Introduction to Partial Differential Equations, which originally appeared in the Princeton series Mathematical Notes, serves as a text for mathematics students at the intermediate graduate level. The goal is to acquaint readers with the fundamental classical results of partial differential equations and to guide them into some aspects of the modern theory to the point where they will be equipped to read advanced treatises and research papers. This book includes many more exercises than the first edition, offers a new chapter on pseudodifferential operators, and contains additional material throughout.
The first five chapters of the book deal with classical theory: first-order equations, local existence theorems, and an extensive discussion of the fundamental differential equations of mathematical physics. The techniques of modern analysis, such as distributions and Hilbert spaces, are used wherever appropriate to illuminate these long-studied topics. The last three chapters introduce the modern theory: Sobolev spaces, elliptic boundary value problems, and pseudodifferential operators.
This two-volume monograph is a comprehensive and up-to-date presentation of the theory and applications of kinetic equations. The second volume covers discrete velocity models of the Boltzmann equation, results on the Landau equation, and numerical (deterministic and stochastic) methods for the solution of kinetic equations.
The book concerns with solving about 650 ordinary and partial differential equations. Each equation has at least one solution and each solution has at least one coloured graph. The coloured graphs reveal different features of the solutions. Some graphs are dynamical as for Clairaut differential equations. Thus, one can study the general and the singular solutions. All the equations are solved by Mathematica. The first chapter contains mathematical notions and results that are used later through the book. Thus, the book is self-contained that is an advantage for the reader. The ordinary differential equations are treated in Chapters 2 to 4, while the partial differential equations are discussed in Chapters 5 to 10. The book is useful for undergraduate and graduate students, for researchers in engineering, physics, chemistry, and others. Chapter 9 treats parabolic partial differential equations while Chapter 10 treats third and higher order nonlinear partial differential equations, both with modern methods. Chapter 10 discusses the Korteweg-de Vries, Dodd-Bullough-Mikhailov, Tzitzeica-Dodd-Bullough, Benjamin, Kadomtsev-Petviashvili, Sawada-Kotera, and Kaup-Kupershmidt equations.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface.
We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.