Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.
Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike.
Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unitgroups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces.Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts andmotivation are recapped throughout.
There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.
This book is clearly written and presents a large number of examples illustrating the theory . . . there is no other book of comparable content available. Because of its detailed coverage of applications generally neglected in the literature, it is a desirable if not essential addition to undergraduate mathematics and computer science libraries.
-CHOICE
As a cornerstone of mathematical science, the importance of modern algebra and discrete structures to many areas of science and technology is apparent and growing-with extensive use in computing science, physics, chemistry, and data communications as well as in areas of mathematics such as combinatorics.
Blending the theoretical with the practical in the instruction of modern algebra, Modern Algebra with Applications, Second Edition provides interesting and important applications of this subject-effectively holding your interest and creating a more seamless method of instruction.
Incorporating the applications of modern algebra throughout its authoritative treatment of the subject, this book covers the full complement of group, ring, and field theory typically contained in a standard modern algebra course. Numerous examples are included in each chapter, and answers to odd-numbered exercises are appended in the back of the text.
Chapter topics include: Boolean AlgebrasPolynomial and Euclidean RingsGroupsQuotient RingsQuotient GroupsField ExtensionsSymmetry Groups in Three DimensionsLatin SquaresPolya--Burnside Method of EnumerationGeometrical ConstructionsMonoids and MachinesError-Correcting CodesRings and Fields
In addition to improvements in exposition, this fully updated Second Edition also contains new material on order of an element and cyclic groups, more details about the lattice of divisors of an integer, and new historical notes.
Filled with in-depth insights and over 600 exercises of varying difficulty, Modern Algebra with Applications, Second Edition can help anyone appreciate and understand this subject.
This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up through recent advances. Beginning with an investigation of regularity phenomena for single diffeomorphisms, the book goes on to describes a circle of ideas surrounding Filipkiewicz's Theorem, which recovers the smooth structure of a manifold from its full diffeomorphism group. Topics covered include the simplicity of homeomorphism groups, differentiability of continuous Lie group actions, smooth conjugation of diffeomorphism groups, and the reconstruction of spaces from group actions. Various classical and modern tools are developed for controlling the dynamics of general finitely generated group actions on one-dimensional manifolds, subject to regularity bounds, including material on Thompson's group F, nilpotent groups, right-angled Artin groups, chain groups, finitely generated groups with prescribed critical regularities, and applications to foliation theory and the study of mapping class groups.
The book will be of interest to researchers in geometric group theory.