Generative AI is the hottest topic in tech. This practical book teaches machine learning engineers and data scientists how to use TensorFlow and Keras to create impressive generative deep learning models from scratch, including variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, normalizing flows, energy-based models, and denoising diffusion models.
The book starts with the basics of deep learning and progresses to cutting-edge architectures. Through tips and tricks, you'll understand how to make your models learn more efficiently and become more creative.
This book also explores the future of generative AI and how individuals and companies can proactively begin to leverage this remarkable new technology to create competitive advantage.
The definitive guide to LLMs, from architectures, pretraining, and fine-tuning to Retrieval Augmented Generation (RAG), multimodal Generative AI, risks, and implementations with ChatGPT Plus with GPT-4, Hugging Face, and Vertex AI
Key Features
- Compare and contrast 20+ models (including GPT-4, BERT, and Llama 2) and multiple platforms and libraries to find the right solution for your project
- Apply RAG with LLMs using customized texts and embeddings
- Mitigate LLM risks, such as hallucinations, using moderation models and knowledge bases
- Purchase of the print or Kindle book includes a free eBook in PDF format
Book Description
Transformers for Natural Language Processing and Computer Vision, Third Edition, explores Large Language Model (LLM) architectures, applications, and various platforms (Hugging Face, OpenAI, and Google Vertex AI) used for Natural Language Processing (NLP) and Computer Vision (CV).
The book guides you through different transformer architectures to the latest Foundation Models and Generative AI. You'll pretrain and fine-tune LLMs and work through different use cases, from summarization to implementing question-answering systems with embedding-based search techniques. You will also learn the risks of LLMs, from hallucinations and memorization to privacy, and how to mitigate such risks using moderation models with rule and knowledge bases. You'll implement Retrieval Augmented Generation (RAG) with LLMs to improve the accuracy of your models and gain greater control over LLM outputs.
Dive into generative vision transformers and multimodal model architectures and build applications, such as image and video-to-text classifiers. Go further by combining different models and platforms and learning about AI agent replication.
This book provides you with an understanding of transformer architectures, pretraining, fine-tuning, LLM use cases, and best practices.
What you will learn
- Breakdown and understand the architectures of the Original Transformer, BERT, GPT models, T5, PaLM, ViT, CLIP, and DALL-E
- Fine-tune BERT, GPT, and PaLM 2 models
- Learn about different tokenizers and the best practices for preprocessing language data
- Pretrain a RoBERTa model from scratch
- Implement retrieval augmented generation and rules bases to mitigate hallucinations
- Visualize transformer model activity for deeper insights using BertViz, LIME, and SHAP
- Go in-depth into vision transformers with CLIP, DALL-E 2, DALL-E 3, and GPT-4V
Who this book is for
This book is ideal for NLP and CV engineers, software developers, data scientists, machine learning engineers, and technical leaders looking to advance their LLMs and generative AI skills or explore the latest trends in the field.
Knowledge of Python and machine learning concepts is required to fully understand the use cases and code examples. However, with examples using LLM user interfaces, prompt engineering, and no-code model building, this book is great for anyone curious about the AI revolution.
Table of Contents
- What are Transformers?
- Getting Started with the Architecture of the Transformer Model
- Emergent vs Downstream Tasks: The Unseen Depths of Transformers
- Advancements in Translations with Google Trax, Google Translate, and Gemini
- Diving into Fine-Tuning through BERT
- Pretraining a Transformer from Scratch through RoBERTa
- The Generative AI Revolution with ChatGPT
- Fine-Tuning OpenAI GPT Models
- Shattering the Black Box with Interpretable Tools
- Investigating the Role of Tokenizers in Shaping Transformer Models
(N.B. Please use the Read Sample option to see further chapters)
The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products
Large Language Models (LLMs) like Llama 3, Claude 3, and the GPT family are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, Second Edition, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems.
Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, and hands-on exercises. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, prompting, fine-tuning, performance, and much more. The resources on the companion website include sample datasets and up-to-date code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and GPT-3.5), Google (BERT, T5, and Gemini), X (Grok), Anthropic (the Claude family), Cohere (the Command family), and Meta (BART and the LLaMA family).
A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field.
--Pete Huang, author of The Neuron
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
This is the first text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years. It presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It provides the first text to use graphical models to describe probability distributions when there are no other books that apply graphical models to machine learning. It is also the first four-color book on pattern recognition. The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher.
The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models
Purchase of the print or Kindle book includes a free eBook in PDF format
Key Features
- Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models
- Build solutions for real-world computer vision problems using PyTorch
- All the code files are available on GitHub and can be run on Google Colab
Book Description
Whether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks.
The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion.
You'll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You'll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you'll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you'll learn best practices for deploying a model to production.
By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.
What you will learn
- Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer
- Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks
- Implement multi-object detection and segmentation
- Leverage foundation models to perform object detection and segmentation without any training data points
- Learn best practices for moving a model to production
Who this book is for
This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.
Table of Contents
- Artificial Neural Network Fundamentals
- PyTorch Fundamentals
- Building a Deep Neural Network with PyTorch
- Introducing Convolutional Neural Networks
- Transfer Learning for Image Classification
- Practical Aspects of Image Classification
- Basics of Object Detection
- Advanced Object Detection
- Image Segmentation
- Applications of Object Detection and Segmentation
- Autoencoders and Image Manipulation
- Image Generation Using GANs
(N.B. Please use the Read Sample option to see further chapters)
Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you'll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers--including experienced practitioners and novices alike--will learn the tools, best practices, and challenges involved in building a real-world ML application step by step.
Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to plan an ML application and measure success. Part II explains how to build a working ML model. Part III demonstrates ways to improve the model until it fulfills your original vision. Part IV covers deployment and monitoring strategies.
This book will help you:
Get well versed with state-of-the-art techniques to tailor training processes and boost the performance of computer vision models using machine learning and deep learning techniques
Key Features:
Book Description:
Computer vision is a scientific field that enables machines to identify and process digital images and videos. This book focuses on independent recipes to help you perform various computer vision tasks using TensorFlow.
The book begins by taking you through the basics of deep learning for computer vision, along with covering TensorFlow 2.x's key features, such as the Keras and tf.data.Dataset APIs. You'll then learn about the ins and outs of common computer vision tasks, such as image classification, transfer learning, image enhancing and styling, and object detection. The book also covers autoencoders in domains such as inverse image search indexes and image denoising, while offering insights into various architectures used in the recipes, such as convolutional neural networks (CNNs), region-based CNNs (R-CNNs), VGGNet, and You Only Look Once (YOLO).
Moving on, you'll discover tips and tricks to solve any problems faced while building various computer vision applications. Finally, you'll delve into more advanced topics such as Generative Adversarial Networks (GANs), video processing, and AutoML, concluding with a section focused on techniques to help you boost the performance of your networks.
By the end of this TensorFlow book, you'll be able to confidently tackle a wide range of computer vision problems using TensorFlow 2.x.
What You Will Learn:
Who this book is for:
This book is for computer vision developers and engineers, as well as deep learning practitioners looking for go-to solutions to various problems that commonly arise in computer vision. You will discover how to employ modern machine learning (ML) techniques and deep learning architectures to perform a plethora of computer vision tasks. Basic knowledge of Python programming and computer vision is required.
AI is poised to create a whole new way of working. Are you ready for the pivotal moment?
Generative AI tools are rapidly transforming businesses and redefining career roles. And, Prompt Engineering-the ability to communicate with AI models like ChatGPT is fast emerging as an essential skill. This book will help you master the new skills for the coming decade.
What you will learn
__________________________________________________________
Riveting and captivating, this book is a must-read for every professional seeking to create an edge within their respective domain. - Nikhil Parva-Former Managing Consulting Advisor, KPMG.
__________________________________________________________
This step-by-step is your on-ramp to the AI Enabled Workforce. Learn how to use AI as your co-pilot with effective prompts that unleash your creativity, turbocharge your productivity and enhance operational efficiency. Each chapter features curated prompts that illustrate key concepts with simplicity and clarity.
And as an added bonus, supplement your learning with our companion book website at getAIready.com for continuous updates, tips & insights, engaging blogs and content downloads.
Book is authored by Harish Bhat, a seasoned tech industry professional based in Silicon Valley, California. During his various consulting engagements, he has seen at close quarters the technology disruption that is transforming businesses and creating new business models.
Give your career an AI Boost by ordering a copy of this book now!
In today's rapidly changing digital landscape, understanding and leveraging artificial intelligence (AI) is not just beneficial-it's essential. Raising AI-Smart Kids: A Practical Guide for Parents to Navigate the Future of Artificial Intelligence by Stephanie Worrell, MA, is your essential companion on this journey.
What You Will Find InsideRaising AI-Smart Kids equips you with the knowledge, tools, and strategies to confidently navigate the AI landscape. Inside, discover:
Real-world Benefits
Say goodbye to the days of being confused by your child's homework. With an AI assistant, even the dreaded new math becomes less intimidating. Whether you're assisting your child in building a science fair volcano or deciphering Shakespeare's sonnets, AI is your go-to helper, armed with quick facts, useful diagrams, and a knack for explaining complex concepts in simple terms.
Empowerment through KnowledgeUnderstanding AI can be challenging. This book simplifies complex concepts, helping you grasp what AI is, what it isn't, and how it works. Learn the fundamentals of AI, including data, pattern recognition, and prediction.
Practical Tools and TipsRaising AI-Smart Kids provides a curated list of AI tools to enhance learning, creativity, and productivity. Discover educational apps like Khan Academy Kids and Photomath, and creative tools like Craiyon and Soundtrap for Education.
Safety and Privacy GuidelinesProtecting your family's privacy is essential. This book offers practical advice for managing digital footprints, implementing privacy controls, and teaching your children the value of data security.
Ethical and Critical ThinkingAI is not perfect and reflects the biases of its creators. Raising AI-Smart Kids teaches you how to instill a questioning mindset in your children, encouraging them to think critically about the information and technology they encounter.Future-Proof SkillsAs AI evolves, so must our skills. This book focuses on timeless human abilities that complement AI, such as creativity, communication, critical thinking, and adaptability.
Family-Centered ApproachRaising AI-Smart Kids promotes open communication between parents and children, allowing them to navigate the digital world together. By sharing values and establishing clear boundaries, you ensure AI is a positive force in your home.