The second edition of Introduction to Partial Differential Equations, which originally appeared in the Princeton series Mathematical Notes, serves as a text for mathematics students at the intermediate graduate level. The goal is to acquaint readers with the fundamental classical results of partial differential equations and to guide them into some aspects of the modern theory to the point where they will be equipped to read advanced treatises and research papers. This book includes many more exercises than the first edition, offers a new chapter on pseudodifferential operators, and contains additional material throughout.
The first five chapters of the book deal with classical theory: first-order equations, local existence theorems, and an extensive discussion of the fundamental differential equations of mathematical physics. The techniques of modern analysis, such as distributions and Hilbert spaces, are used wherever appropriate to illuminate these long-studied topics. The last three chapters introduce the modern theory: Sobolev spaces, elliptic boundary value problems, and pseudodifferential operators.
Part explanation of important recent work, and part introduction to some of the techniques of modern partial differential equations, this monograph is a self-contained exposition of the Neumann problem for the Cauchy-Riemann complex and certain of its applications. The authors prove the main existence and regularity theorems in detail, assuming only a knowledge of the basic theory of differentiable manifolds and operators on Hilbert space. They discuss applications to the theory of several complex variables, examine the associated complex on the boundary, and outline other techniques relevant to these problems. In an appendix they develop the functional analysis of differential operators in terms of Sobolev spaces, to the extent it is required for the monograph.
A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant results and techniques that are of interest in their own right.
This book develops the abstract theory along with a well-chosen selection of concrete examples that exemplify the results and show the breadth of their applicability. After a preliminary chapter containing the necessary background material on Banach algebras and spectral theory, the text sets out the general theory of locally compact groups and their unitary representations, followed by a development of the more specific theory of analysis on Abelian groups and compact groups. There is an extensive chapter on the theory of induced representations and its applications, and the book concludes with a more informal exposition on the theory of representations of non-Abelian, non-compact groups.
Featuring extensive updates and new examples, the Second Edition:
A Course in Abstract Harmonic Analysis, Second Edition serves as an entrée to advanced mathematics, presenting the essentials of harmonic analysis on locally compact groups in a concise and accessible form.
A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant results and techniques that are of interest in their own right.
This book develops the abstract theory along with a well-chosen selection of concrete examples that exemplify the results and show the breadth of their applicability. After a preliminary chapter containing the necessary background material on Banach algebras and spectral theory, the text sets out the general theory of locally compact groups and their unitary representations, followed by a development of the more specific theory of analysis on Abelian groups and compact groups. There is an extensive chapter on the theory of induced representations and its applications, and the book concludes with a more informal exposition on the theory of representations of non-Abelian, non-compact groups.
Featuring extensive updates and new examples, the Second Edition:
A Course in Abstract Harmonic Analysis, Second Edition serves as an entrée to advanced mathematics, presenting the essentials of harmonic analysis on locally compact groups in a concise and accessible form.
This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.
The object of this monograph is to give an exposition of the real-variable theory of Hardy spaces (HP spaces). This theory has attracted considerable attention in recent years because it led to a better understanding in Rn of such related topics as singular integrals, multiplier operators, maximal functions, and real-variable methods generally. Because of its fruitful development, a systematic exposition of some of the main parts of the theory is now desirable. In addition to this exposition, these notes contain a recasting of the theory in the more general setting where the underlying Rn is replaced by a homogeneous group.